An evidential fusion approach for gender profiling
نویسندگان
چکیده
CCTV (Closed-Circuit TeleVision) systems are broadly deployed in the present world. To ensure in-time reaction for intelligent surveillance, it is a fundamental task for real-world applications to determine the gender of people of interest. However, normal video algorithms for gender profiling (usually face profiling) have three drawbacks. First, the profiling result is always uncertain. Second, the profiling result is not stable. The degree of certainty usually varies over time, sometimes even to the extent that a male is classified as a female, and vice versa. Third, for a robust profiling result in cases that a person’s face is not visible, other features, such as body shape, are required. These algorithms may provide different recognition results at the very least, they will provide different degrees of certainties. To overcome these problems, in this paper, we introduce an Dempster-Shafer (DS) evidential approach that makes use of profiling results from multiple algorithms over a period of time, in particular, Denoeux’s cautious rule is applied for fusing mass functions through time lines. Experiments show that this approach does provide better results than single profiling results and classic fusion results. Furthermore, it is found that if severe mis-classification has occurred at the beginning of the time line, the combination can yield undesirable results. To remedy this weakness, we further propose three extensions to the evidential approach proposed above incorporating notions of time-window, time-attenuation, and time-discounting, respectively. These extensions also applies Denoeux’s rule along with time lines and take the DS approach as a special case. Experiments show that these three extensions do provide better results than their predecessor when mis-classifications occur. Keyword: Gender Profiling; Evidence Theory; Cautious Rule; Time-Window; TimeAttenuation; Time-Discounting
منابع مشابه
An Evidential Improvement for Gender Profiling
CCTV systems are broadly deployed in the present world. To ensure in-time reaction for intelligent surveillance, it is a fundamental task for real-world applications to determine the gender of people of interest. However, normal video algorithms for gender profiling (usually face profiling) have three drawbacks. First, the profiling result is always uncertain. Second, for a time-lasting gender ...
متن کاملEvidential Fusion for Gender Profiling
Gender profiling is a fundamental task that helps CCTV systems to provide better service for intelligent surveillance. Since subjects being detected by CCTVs are not always cooperative, a few profiling algorithms are proposed to deal with situations when faces of subjects are not available, among which the most common approach is to analyze subjects’ body shape information. In addition, there a...
متن کاملDesigning a Home Security System using Sensor Data Fusion with DST and DSMT Methods
Today due to the importance and necessity of implementing security systems in homes and other buildings, systems with higher certainty, lower cost and with sensor fusion methods are more attractive, as an applicable and high performance methods for the researchers. In this paper, the application of Dempster-Shafer evidential theory and also the newer, more general one Dezert-Smarandache theory ...
متن کاملA Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure
Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...
متن کاملAn Evidential Fusion N etworl( based Context Reasoning for Smart Media Service
For effective smart media service, a reliable and confidential context recognition is required to prepare and react properly. However, it is difficult to achieve a higher confidence level for several reasons. First, raw data from multiple sensors have different degrees of uncertainty. Second, generated contexts can indicate conflicting results, even though they are acquired by simultaneous oper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 333 شماره
صفحات -
تاریخ انتشار 2016